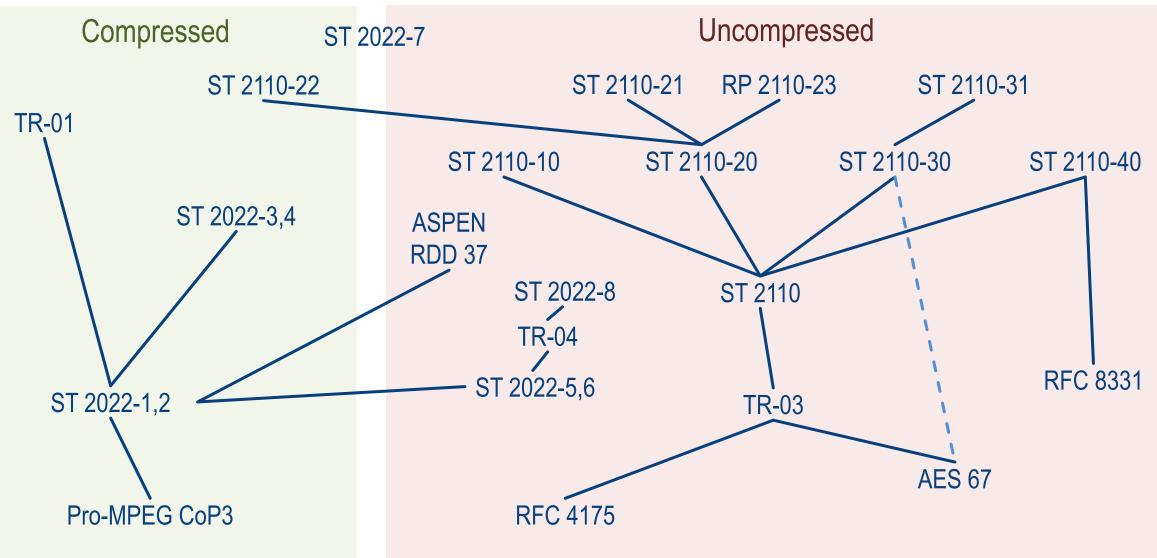


SMPTE ST 2110 in 60 Minutes


Wes Simpson President, Telecom Product Consulting

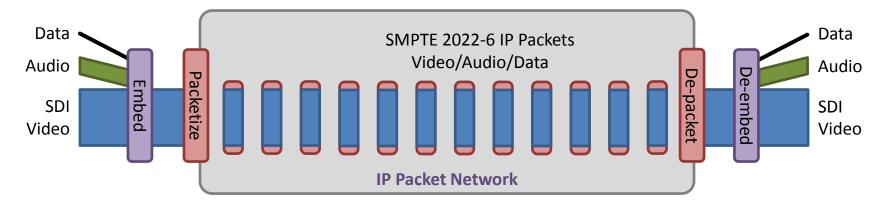
IP SHOWCASE THEATER AT NAB – APRIL 8-11, 2019

IP Video Evolutionary Tree

Elements of ST 2110

- ST 2110-10 System and Timing
- ST 2110-20 Uncompressed Video
- ST 2110-21 Video Stream Packet Shaping
- ST 2110-30 Uncompressed Audio
- ST 2110-31 AES3 Audio Streams
- ST 2110-40 Ancillary Data

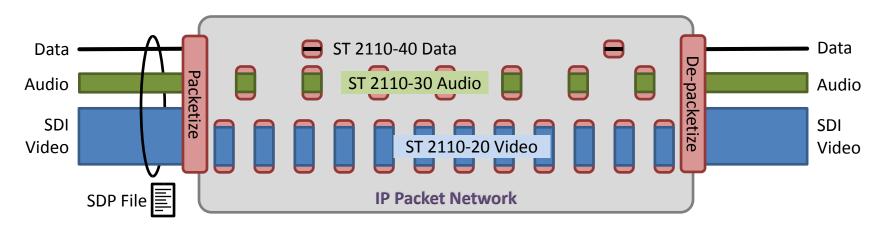
CP SHOWCASE[™] THEATER


New Elements of ST 2110

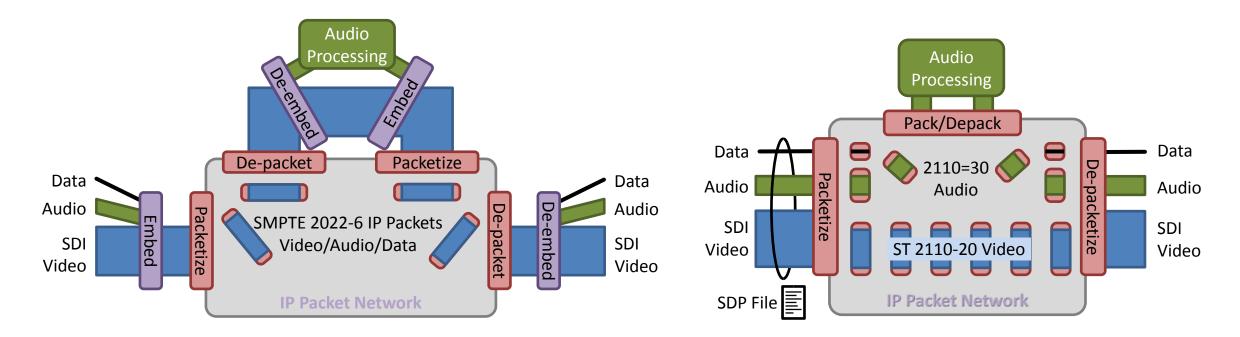
- OV 2110-0 Roadmap for the 2110 Document Suite
- ST 2110-10 System and Timing
- ST 2110-20 Uncompressed Video
- ST 2110-21 Video Stream Packet Shaping
- ST 2110-22 Constant Bit-Rate Compressed Video
- RP 2110-23 Single Video Essence Transport over Multiple ST 2110-20 Streams
- ST 2110-30 Uncompressed Audio
- ST 2110-31 AES3 Audio Streams
- ST 2110-40 Ancillary Data

CPSHOWCASE^{**} ST 2022-6 High Bit Rate Media over IP

- Take entire SDI signal and encapsulate it in IP stream
 - Includes audio and embedded data signals
- Easy to maintain audio/video synchronization
 - Hard to process just one part of a stream



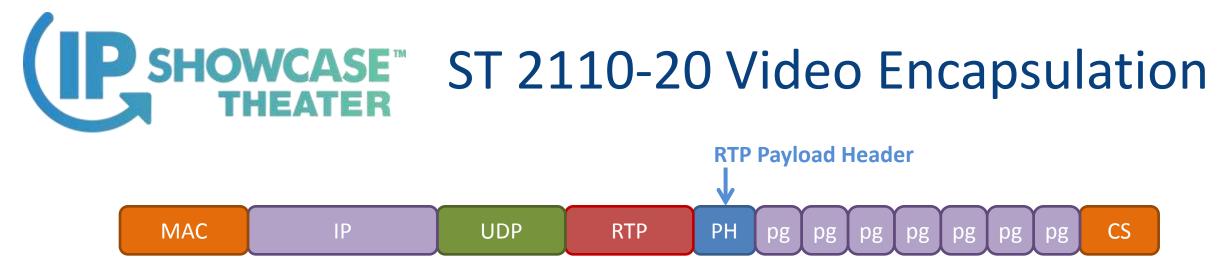
- Each media type in a separate packet stream
 - Easy to process individual components
 - Signals need to be resynchronized after processing
- PTP (Precision Time Protocol) used for packet timestamping



Audio Processing Packet Flow

Using SDI/ST 2022-6

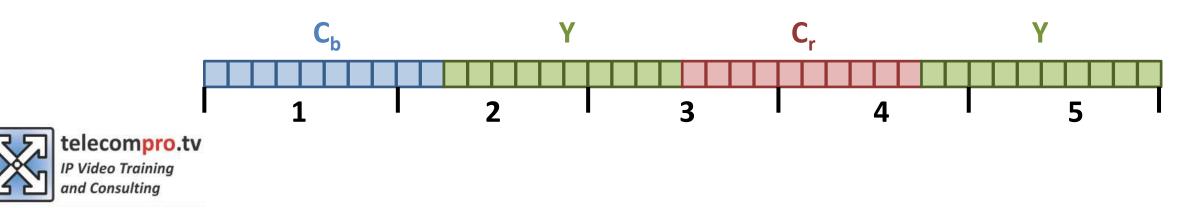
Using ST 2110



CRASE ST 2110-10 System Timing and Definitions

- Maximum UDP datagram size: 1460 octets, including UDP header
 - Extended UDP datagram allowed with up to 8960 octets
- SMPTE ST 2059-2 PTP Profile of IEEE 1588-2008
 - If interchanging audio with AES67, then compatible parameters must be used
- RTP timestamps are tied to the media
 - For video, RTP timestamps of all packets for video frame are the same
 - For real-time sources, this should represent the Image Capture Time
 - For SDI converters, RTP timestamp is moment when video frame alignment point arrives at device input (SMPTE ST2059-1 defines alignment points)
- All media clocks must have an offset of zero
 - This makes it easier to recover from loss of signal or unexpected system restart

elecompro.tv


- Multiple video pixel groups (pgroups)
- **RTP Payload Header applied**
- Inserted into an RTP packet
- Placed into UDP packet \bullet
- IP packet header attached
- Wrapped into Ethernet Frame

ST 2110-20 Pixel Groups

- Pixels formed into pgroups
 - pgroup size depends on sampling format
 - Must be integer number of octets
 - Pixels that share samples must be in the same pgroup
- Example: 4:2:2 10-bit
 - 2 pixels in 5 octets

Pixel Group Sizes

- Every supported video format listed in ST 2110-20 tables
 - Tables also include order of samples within each pgroup

sampling	depth	pgroup size (octets)	pgroup coverage (pixels)	Sample Order
	8	4	2	C' _B ,Y0',C' _R ,Y1'
YCbCr- 4:2:2	10	5	2	C' _B ,Y0',C' _R ,Y1'
CLYCbCr-	12	6	2	C' _B ,Y0',C' _R ,Y1'
4:2:2	16, 16f	8	2	C' _B ,Y0',C' _R ,Y1'
	8	4	2	C' _T ,I0',C' _P ,I1'
ICtCp-	10	5	2	C' _T ,I0',C' _P ,I1'
4:2:2	12	6	2	C' _T ,I0',C' _P ,I1'
	16, 16f	8	2	C' _T ,I0',C' _P ,I1'

HOWCASE ST 2110-20 Video Packet Header

		<							→	
		V P X CC M PT								
		Sequence Number (low bits)								
	Time Stamp								RTP Header	
		Synchronization Source (SSRC) Identifier							er	
		Sequence Number (high bits)							RT	
oeat	Length of Sample Row Data (octets)							w Data (octets)	RTP Payload	
Jan Kepeat	\langle	F Sample Row Number							yloa	
Can		C Sample Row Data Offset								
-		Payload – variable size						ader		
_		tol.				1993 (1996)				

- 32-bit Sequence Number (16 bit Sequence number would wrap in less than half a second for Gigabit-class payloads)
- Length of Sample Row Data = Number of octets from scan line in this datagram. Must be multiple of pgroup
- F = 0 for progressive scan and first field in interlace video
- F = 1 for second field in interlace video
- Video Line Number = Video scan line number, starts at 0 for first active line of video (note difference from SDI line numbering)
- C = 1 if more than one line is in datagram, set to 0 for last line in each datagram
- Sample Row Data Offset
 - = Location of first pixel of payload data within scan line
 - = 0 if first pixel in scan line; counts by pixels

elecompro.tv

Video Training

SHOWCASE Calculating Video Stream Packet and Bit Rates

- Step 1: Gather data about video signal:
 - Image Size (image height in lines, image width in pixels)
 - Sampling system (e.g YCbCr-4:2:2) and sample depth (e.g. 10 bits)
 - Frame Rate

Image Size: 1920x1080 Sampling: 4:2:2 10-bit Frame Rate: 59.94

More Calculating

- Step 2: Figure out RTP payload size in bytes and pixels
 - Per ST 2110, standard MAXUDP is 1460 bytes
 - UDP and RTP headers are 8 bytes and 12 bytes, for a total of 20 bytes
 - Worst case datagram with pixels from two rows: RTP Payload Header of 14 bytes
 - Subtract headers from MAXUDP to get available RTP payload

Image Size: 1920x1080 Sampling: 4:2:2 10-bit Frame Rate: 59.94 UDP Payload = 1460 - 8 (UDP) - 12(RTP) - 14 (Payload Header) = 1426 bytes Payload

CPSHOWCASE^{THEATER}

And Some More Calculating

- Step 3: Calculate max number of pgroups and pixels in a packet
 - Using ST 2110-20 table, select correct pgroup size in bytes and pixels
 - Divide available payload by pgroup size
 - Take result and round down (truncate) can't have a partial pgroup
 - Multiply pgroups/packet by size of pgroup in pixels to get pixels per packet

Image Size: 1920x1080 Sampling: 4:2:2 10-bit Frame Rate: 59.94
UDP Payload = 1460 - 8 (UDP) - 12(RTP) - 14 (Payload Header) = 1426 bytes Payload
1426 bytes / 5 (bytes/pgroup) = 285.2, round DOWN to 285 pgroups/packet
285 pgroups x 2 (pixels/pgroup) = 570 (pixels/packet)

The Calculations Continue...

- Step 4: Determine number of packets per video frame
 - Multiply image width by height to get total pixels in each frame
 - Divide total pixels by pixels per packet to get packets per frame
 - Note: Must round result of this division up last packet may be partially filled

Image Size: 1920x1080 Sampling: 4:2:2 10-bit Frame Rate: 59.94
UDP Payload = 1460 - 8 (UDP) - 12(RTP) - 14 (Payload Header) = 1426 bytes Payload
1426 bytes / 5 (bytes/pgroup) = 285.2, round DOWN to 285 pgroups/packet
285 pgroups x 2 (pixels/pgroup) = 570 (pixels/packet)
1920 pixels x 1080 lines = 2,073,600 pixels/frame
2,073,600 / 570 (pixels/packet) = 3637.89 round UP to 3638 packets/frame

CPSHOWCASE^{THEATER}

Even More Calculating

- Step 5: Calculate total size of each packet on wire
 - Multiply number of pgroups per packet by size of pgroup in bytes
 - Determine UDP packet size: (payload in bytes) + 14 + 12 + 8
 - Add IP header (20), Ethernet + VLAN (22), plus preamble and gap (20)
 - Total is size of each packet on wire

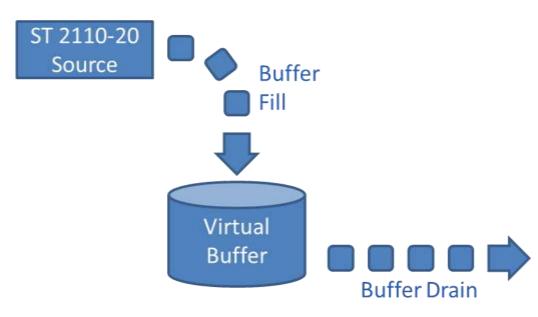
Image Size: 1920x1080 Sampling: 4:2:2 10-bit Frame Rate: 59.94
UDP Payload = 1460 - 8 (UDP) - 12(RTP) - 14 (Payload Header) = 1426 bytes Payload
1426 bytes / 5 (bytes/pgroup) = 285.2, round DOWN to 285 pgroups/packet
285 pgroups x 2 (pixels/pgroup) = 570 (pixels/packet)
1920 pixels x 1080 lines = 2,073,600 pixels/frame
2,073,600 / 570 (pixels/packet) = 3637.89 round UP to 3638 packets/frame

285 pgroups x 5 (bytes/pgroup) + 14 + 12 + 8+ 20 (IP) + 22 (VLAN) + 20 = 1521 bytes/pkt.

The Final Step

- Step 6: Determine stream bit rate
 - Multiply packets/frame by frame rate of signal (ok to not round)
 - Multiply packets per second by bytes per packet
 - Multiply by 8 to convert bytes to bits per second
 - Express final result in Gigabits per second

Image Size: 1920x1080 Sampling: 4:2:2 10-bit Frame Rate: 59.94
UDP Payload = 1460 - 8 (UDP) - 12(RTP)- 14 (Pay. Head.) = 1426 bytes
1426 bytes / 5 (bytes/pgroup) = 285.2, round DOWN to 285 pgroups/packet
285 pgroups x 2 (pixels/pgroup) = 570 (pixels/packet)
1920 pixels x 1080 lines = 2,073,600 pixels/frame
2,073,600 / 570 (pixels/packet) = 3637.89 round UP to 3638 packets/frame
285 pgroups x 5 (bytes/pgroup) + 14 + 12 + 8 + 20 (IP) + 22 (VLAN) + 20 = 1521 bytes/pkt.


telecompro.tv

3638 packets/frame x 59.94 x 1521 x 8 = 2.65 Gbit/s

ST 2110-21 Timing Models

- Senders can't burst out all of their data at once
 - Overloads receivers and network switch buffers
- Some variability is necessary
 - HANC/VANC gaps, software-based senders

CONSTRAINTS FOR ST 2110-20 THEATER Two Constraints for ST 2110-20 Senders

- Network Compatibility Model
 - Ensures streams will not overflow buffers inside network devices
 - Scaling factor β of 1.1 means buffers drain 10% faster than they fill
- Virtual Receiver Buffer Model
 - Buffer is modeled as input of every receiver device
 - Note: Must be included in end-to-end system delay
 - Packets read from buffer perfectly, based on video format
 - Buffer not allowed to overflow or underflow
- All senders must comply with both models

telecompro.tv

ST 2110-21 Gapped, Linear Packet Schedules

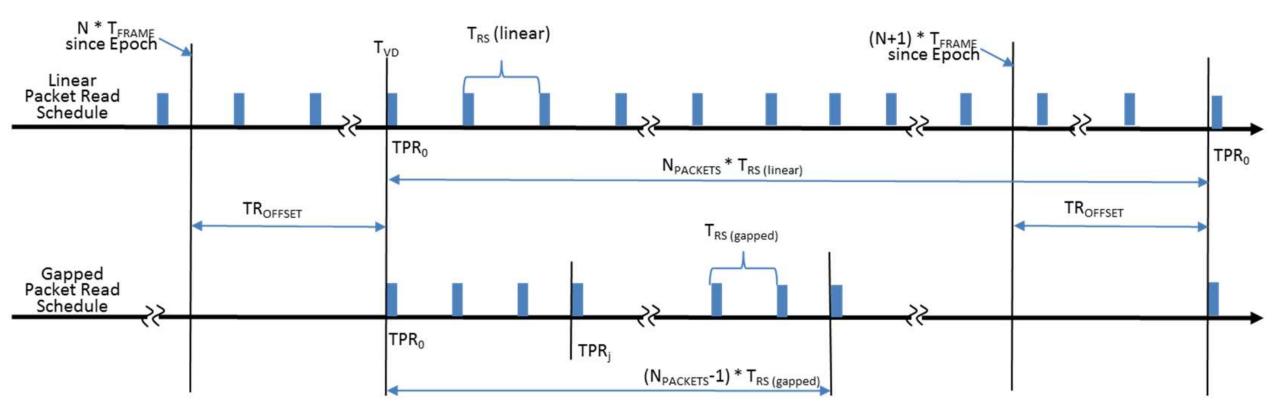
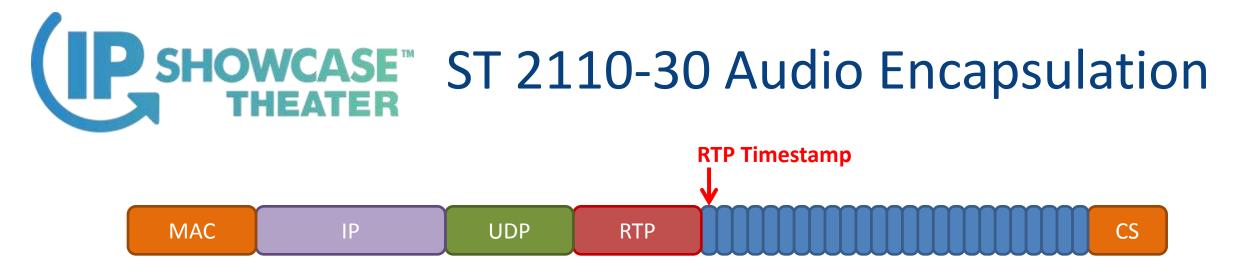


Image Source: SMPTE ST 2110-21 Traffic Shaping and Delivery Timing for Video

CP SHOWCASE ST 2110-

ST 2110-21 Sender Types

- Three Sender Types: N = Narrow, NL = Narrow Linear, W = Wide
- Type N is designed for real-time capture and processing (live events)
 - Maximum required receiver buffer is about 9 packets in gapped mode
 - Model assumes TR_{OFFSET} of a couple of video lines from SMPTE Epoch
 - Small buffer means limited delay passing through each device in systems
 - Pixels inside packets "roughly" in sync with pixels in SDI
- Type NL is linear version of N no gaps corresponding to SDI VANC
- Type W is designed to support software-based video sources (graphics)
 - Maximum receive buffer is 720 packets in some popular formats
 - Larger buffer can handle packet bursts more easily
 - Bursty transmission is more common to software-based senders


ST 2110-21 Sender/Receiver Compatibility

Receiver Type	Type N Sender	Type NL Sender	Type W Sender
Type N Synchronous Narrow	Mandatory	Optional	No
Type W Synchronous Wide	Mandatory	Mandatory	Mandatory
Type A Asynchronous	Mandatory	Mandatory	Mandatory

- Synchronous Receivers must have clock locked to Sender
- Synchronous Narrow Receivers are only required to work with Senders that use the default $\mathrm{TR}_{\mathrm{OFFSET}}$

telecompro.tv

- Multiple Audio Samples (16 or 24 bit)
- Grouped into one RTP packet
- Placed into UDP packet
- IP packet header attached
- Wrapped into Ethernet Frame

ST 2110-30 Audio

- Based on AES67
 - 48 kHz, 24-bit linear encoding must be supported in all devices
- Zero Offset Media Clock
 - Forces all media clocks to be tied to common time base
- Audio Channel Grouping
 - How audio channels relate to each other in a stream
- Receiver Classifications
 - Three levels of receiver performance
- Packet size limit 1440 = 1460 (12 (RTP) + 8 (UDP))
- No need for SIP or other connection management

telecompro.tv IP Video Training

CPSHOWCASE^{THEATER}

Importance of "ptime"

- Audio streams are divided into fixed duration packets
 - Common size is 1 msec, signaled using "a=ptime:1" attribute
- Number of samples from a channel depends on sampling rate
 - For example, 48 kHz has 48 samples in 1 msec
 - Each sample could be 2 bytes (16 bit audio) or 3 bytes (24 bit audio)
 - Thus, 1 msec of 48 kHz, 24-bit audio is 48 * 3 = 144 bytes
- Number of channels in a packet limited by payload size
 - Total RTP audio payload is 1440 bytes
 - Jumbo frames not allowed for audio

ST 2110-30 Receiver Classifications

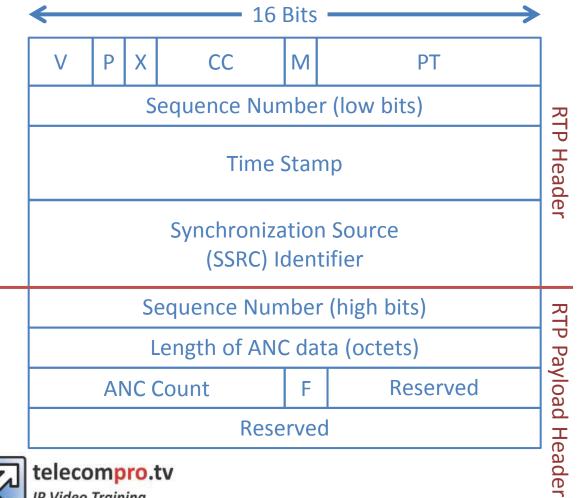
Required Sampling Rates and Packet Times	Α	AX	В	BX	С	СХ
48 KHz, 1 msec	8	8	8	8	8	8
48 KHz, 125 μsec			8	8	64	64
96 KHz, 1 msec		4		4		4
96 KHz, 125 μsec				8		32

ST 2110-30 Audio Channel Grouping Symbols

Channel Grouping Symbol	Quantity of Audio Channels in group	Description of group	Order of Audio Channels in group
М	1	Mono	Mono
DM	2	Dual Mono	M1, M2
ST	2	Standard Stereo	Left, Right
LtRt	2	Matrix Stereo	Left Total, Right Total
51	6	5.1 Surround	L, R, C, LFE, Ls, Rs
71	8	7.1 Surround	L, R, C, LFE, Lss, Rss, Lrs, Rrs
222	24	22.2 Surround	Per SMPTE ST 2036-2, Table 1
U01U64	Unn where nn is the number of channels in group	Undefined	Undefined

2110-40 Ancillary Data

- Extract ancillary data packets from VANC or HANC
 - Captions, time code, ad triggers, etc.
 - Place them into RTP packets with custom header
- Line numbers are based on SDI line numbering
 - Don't match 2110-20 line numbers


		Ancillary Flag	DID	SDID	DC	User Data	CS	
		000 3FF 3FF	41	07	xx	SCTE 104	ZZ	ANC Data Packet
		•	↓			↓		i denet
·								
RTP Header	Payload Hdr.	Anc. Packet Header	DID	SDID	DC	User Data	CS	RTP

IP Video Training and Consulting

ST 2110-40 Ancillary Packet Payload Header

- 32-bit Sequence Number (same as ST 2110-20 video)
- Length of ANC data = Number of octets of all ANC packet headers, ANC payloads, and stuffing
- ANC Count = Number of ANC packets in this payload
- F = Field flag indicates source of ANC packets in this RTP packet, as follows:
 - 00 = Progressive video frame or no source specified
 - 01 = Not valid
 - 10 = First field of an interlaced or PsF frame
 - 11 = Second field of an interlaced or PsF frame

UPSHOWCASE ST 2110-40 ANC Packet Format

С	Line Number (11 bits)		Horizontal Offse	S Stream Num	(7)			
DID (10 bits)		SDID	(10 bits)	unt (10 bits)				
	ANC Packet Payload							
	ANC Packet Payload							
	ANC Packet Payloa	d	Checksum	(10 bits)	Padding to 32 b	its		

- Each ANC packet in the RTP payload has its own header
- Color channel flag: C=1 ANC packet is from HD color difference channel. C=0 in all other cases
- Line Number and Horizontal Offset refer to SDI raster values
- S=1 Multiple streams comprise the format of the original video signal containing the ANC packets
- Stream number indicates where the ANC packets were located within a multi-stream signal
- DID, SDID, Data Count, Packet Payload and Checksum are exact 10-bit values from ANC packet
- For each ANC packet within the RTP payload, padding makes the total number of bits a multiple of 32

telecompro.tv

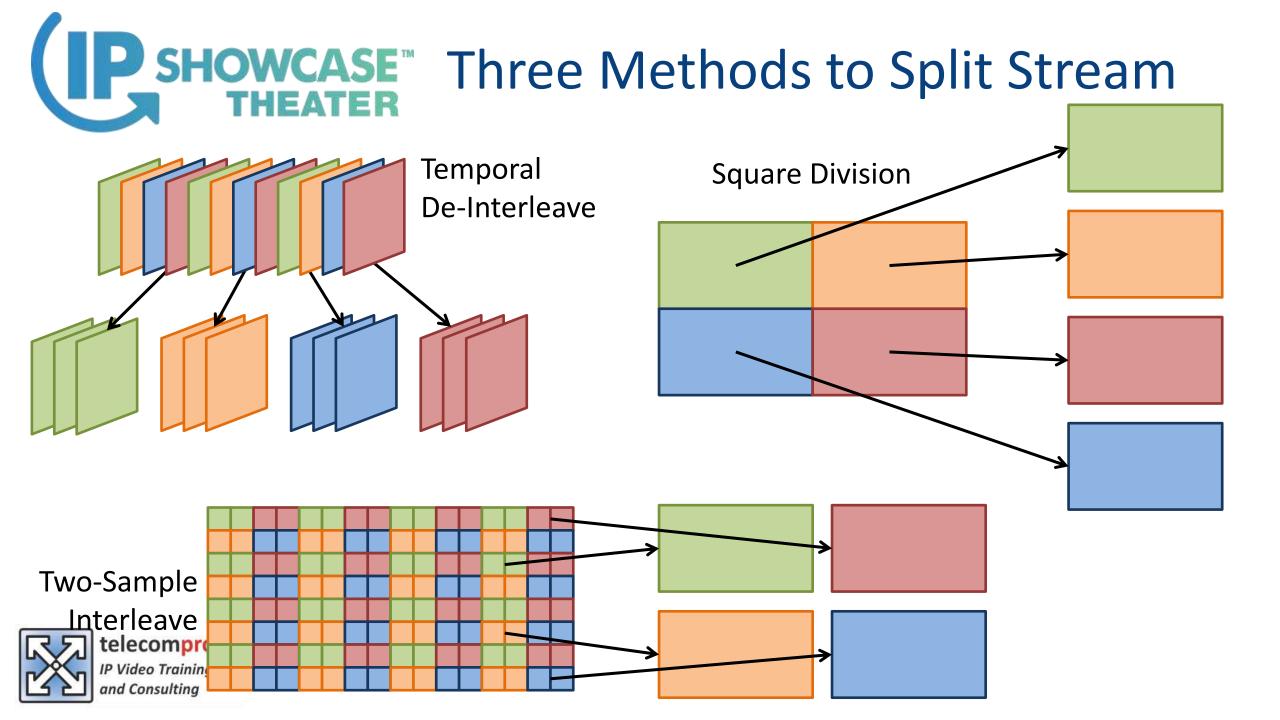
Video Training

Lossless Compression

- Visually lossless compression cannot be seen by observer
 - Some data must always be removed
 - Done so as to be invisible to human viewer
 - Can have very low latency using slice-based compression
- Popular codecs available
 - VC-2 DIRAC from BBC RFC 8450
 - Also JPEG XS draft-lugan-payload-rtp-jpegxs-01
- 2:1 to 8:1 compression ratios
 - 3Gbit/s SDI compressed to 1.5 to 0.5 Gbit/s

CP SHOWCASE^{**} Forthcoming: SMPTE ST 2110-22

- Current Title: "Professional Media over Managed IP Networks: Constant Bit-Rate Compressed Video"
 - Supports CBR compression formats such as VC2
 - Must be a registered RTP media type as per RFC 4855
 - RTP Clock rate of 90 kHz
 - Must conform to either "NL" or "W" network compatibility model of ST 2110-21; virtual receiver buffer model does not apply



Forthcoming: RP 2110-23

- Working Title: "Single Video Essence Transport over Multiple ST 2110-20 Streams"
- Idea is to have a system where multiple low-bandwidth streams can be used to transport one high-bandwidth signal
 - High resolution streams, such as UHD1/4K or UHD2/8K
 - High frame rate streams, such as those over 100 fps
 - Also known as "multiport"
- Each sub-stream is a valid ST 2110-20/2110-21 stream
 - Timestamps tied to original frames
 - Comply with timing models

elecompro.tv

RTP Timestamps

- RTP Timestamps depend on rate of individual Media Clock
 - Video: 90 kHz
 - Audio: 48 kHz or 96 kHz
- RTP Timestamps for 11:00:00 am PDT Apr. 8, 2019 (UTC -7:00)
 - Seconds since SMPTE/PTP Epoch: n = (17,995.75 days * 86,400 + 37)
 - Video Timestamp = mod 2^{32} (n*90,000) = 625,859,024
 - 48 kHz Audio Timestamp = mod 2³² (n*48,000) = 2,624,440,704
 - 96 kHz Audio Timestamp = mod 2³² (n*96,000) = 953,914,112

Timestamp Rollover Times

- RTP Timestamp field is 32 bits
 - Therefore, timestamps will rollover every 2³² clock ticks
 - Rollover time == time between points when timestamp is zero
- Each PTP clock frequency will have a different rollover time

 How many hours for 2³² clock ticks?

Clock Frequency	Rollover Time
90 kHz video	13.256 hours
48 kHz audio	24.855 hours
96 kHz audio	12.428 hours

SDP for ST 2110-22

- Format parameters (a=fmtp) statement must include
 - Image height in lines
 - Image width in pixels
 - TP of either 2110TPNL or 2110TPW
 - Optional value of CMAX if different from default
- Bit rate parameter "b=AS:<bandwidth>" must be included
 - Bandwidth is in kilobits/second calculated over one frame period
- SDP must include a frame rate statement, either
 - a=framerate xx.yy (as a decimal number)
 - exactframerate=M/N (as a ratio of two integers) in "fmtp"

wes.simpson@gmail.com www.telecompro.tv

